Tag Archives: python - Page 2

EBNF Parser Kata

Ката – то вправа в східних бойових мистецтвах, набір рухів які треба повторювати поки не засвоїш досконально. Термін застосовується також і для неробочого, неспортивного, самостійного учбового програмування поза якимось проектом.

На моєму домашньому модемі відвалився DSL, то я вчора ввечері не мав чим зайнятись. (Хоча звісно є купа важливіших речей) Зате біля мене була роздруківка книжечки Ніклауса Вірта “Compiler Construction“, то я взявся перекладати його парсер EBNF що ілюструє метод рекурсивного спуску з Oberon на Python. Вийшло ніби незле:

# ebnf.py
import re

class Symbol(object):
    instances = {}
    def __init__(self, name, pattern):
        self.pattern = pattern
        self.regexp = re.compile(pattern)
        self.instances[name] = self

    def match(self, text):
        text = text.lstrip()
        m = self.regexp.match(text)
        if m:
            return m.group(), text[len(m.group()):]

    @classmethod
    def get_next(cls, text):
        if not text.strip():
            return 'empty', '', ''
        for name, sym in cls.instances.items():
            m = sym.match(text)
            if m:
                return name, m[0], m[1]
        raise UnknownSymbolError('Unknown symbol: %r' % text[:50] + (
            '...' if len(text) > 50 else ''
        ))

Symbol('ident', 'w+')
Symbol('literal', '"[^"]*"')
Symbol('eql', '=')
Symbol('lparen', '(')
Symbol('rparen', ')')
Symbol('lbrak', '[')
Symbol('rbrak', ']')
Symbol('lbrace', '{')
Symbol('rbrace', '}')
Symbol('bar', '|')
Symbol('period', '.')

EBNF = '''
syntax = {production}.
production = identifier "=" expression ".".
expression = term {"|" term}.
term = factor {factor}.
factor = identifier | string | "(" expression ")" | "[" expression "]" | "{" expression "}".
'''

def parse_ebnf(text):
    sym, sym_text, remaining = '', '', text
    
    def next():
        nonlocal sym, sym_text, remaining
        sym, sym_text, remaining = Symbol.get_next(remaining)

    next()
    
    def syntax():
        res = ['syntax']
        while sym == 'ident':
            res.append(production())
        return res

    def production():
        name = sym_text
        next()
        if sym == 'eql':
            next()
        else:
            raise ExpectedEqualityError
        exp = expression()
        if sym == 'period':
            next()
        else:
            raise NoPeriodError
        return ['production', name, exp]

    def expression():
        res = ['expression', term()]
        while sym == 'bar':
            next()
            res.append(term())
        return res

    def term():
        res = ['term']
        while sym in ('ident', 'literal', 'lparen', 'lbrak', 'lbrace'):
            res.append(factor())
        if len(res) == 1:
            raise NoFactorError
        return res

    def factor():
        if sym == 'ident':
            res = [sym, sym_text]
            next()
            return res
        elif sym == 'literal':
            res = [sym, sym_text]
            next()
            return res
        elif sym == 'lparen':
            next()
            exp = expression()
            if sym == 'rparen':
                next()
            else:
                raise NoRParenError
            return ['(', exp]
        elif sym == 'lbrak':
            next()
            exp = expression()
            if sym == 'rbrak':
                next()
            else:
                raise NoRBrakError
            return ['[', exp]
        elif sym == 'lbrace':
            next()
            exp = expression()
            if sym == 'rbrace':
                next()
            else:
                raise NoRBraceError
            return ['{', exp]
        else:
            raise RuntimeError(
                "term should be called only when "
                "sym in ('ident', 'literal', 'lparen', 'lbrak', 'lbrace')"
            )

    return syntax()

class UnknownSymbolError(SyntaxError):
    pass

class NoPeriodError(SyntaxError):
    pass

class NoRParenError(SyntaxError):
    pass

class NoRBrakError(SyntaxError):
    pass

class NoRBraceError(SyntaxError):
    pass

class NoFactorError(SyntaxError):
    pass

class ExpectedEqualityError(SyntaxError):
    pass

Трохи TDD, трохи дописування тестів після:

# test.py
from unittest import TestCase, main, skip

from ebnf import Symbol
from ebnf import parse_ebnf, EBNF
from ebnf import print_tree
from ebnf import (
    NoPeriodError, NoRParenError, UnknownSymbolError,
    NoRBrakError, NoRBraceError, NoFactorError
)

class TestSymbol(TestCase):
    def test_paren(self):
        self.assertEqual(
            Symbol.get_next('(asdf)'),
            ('lparen', '(', 'asdf)')
        )
    def test_ident(self):
        self.assertEqual(
            Symbol.get_next('asdf'),
            ('ident', 'asdf', '')
        )
    def test_bar(self):
        self.assertEqual(
            Symbol.get_next('|asdf'),
            ('bar', '|', 'asdf')
        )

class TestEBNF(TestCase):
    def test_self(self):
        tree = parse_ebnf(EBNF)
        self.assertEqual(
            parse_ebnf(EBNF),
            ['syntax',
             ['production',
              'syntax',
              ['expression',
               ['term', ['{', ['expression', ['term', ['ident', 'production']]]]]]],
             ['production',
              'production',
              ['expression',
               ['term',
                ['ident', 'identifier'],
                ['literal', '"="'],
                ['ident', 'expression'],
                ['literal', '"."']]]],
             ['production',
              'expression',
              ['expression',
               ['term',
                ['ident', 'term'],
                ['{', ['expression', ['term', ['literal', '"|"'], ['ident', 'term']]]]]]],
             ['production',
              'term',
              ['expression',
               ['term',
                ['ident', 'factor'],
                ['{', ['expression', ['term', ['ident', 'factor']]]]]]],
             ['production',
              'factor',
              ['expression',
               ['term', ['ident', 'identifier']],
               ['term', ['ident', 'string']],
               ['term', ['literal', '"("'], ['ident', 'expression'], ['literal', '")"']],
               ['term', ['literal', '"["'], ['ident', 'expression'], ['literal', '"]"']],
               ['term', ['literal', '"{"'], ['ident', 'expression'], ['literal', '"}"']]]]]
        )

    def test_without_period(self):
        with self.assertRaises(NoPeriodError):
            parse_ebnf('symbol = "asdf"')

    def test_without_rparen(self):
        with self.assertRaises(NoRParenError):
            parse_ebnf('symbol = ("asdf"')

    def test_without_rbrak(self):
        with self.assertRaises(NoRBrakError):
            parse_ebnf('symbol = ["asdf"')

    def test_without_rbrace(self):
        with self.assertRaises(NoRBraceError):
            parse_ebnf('symbol = {literal')

    def test_unknown_symbol(self):
        with self.assertRaises(UnknownSymbolError):
            parse_ebnf('!symbol = "asdf"')

    def test_no_factor(self):
        with self.assertRaises(NoFactorError):
            parse_ebnf('sym = ||')

    def test_for_binary(self):
        self.assertEqual(
            parse_ebnf('''
                digit = "0"|"1".
                number = digit {digit}.
            '''),
            ['syntax',
             ['production',
              'digit',
              ['expression', ['term', ['literal', '"0"']], ['term', ['literal', '"1"']]]],
             ['production',
              'number',
              ['expression',
               ['term',
                ['ident', 'digit'],
                ['{', ['expression', ['term', ['ident', 'digit']]]]]]]]
        )


if __name__ == '__main__':
    main()

І я зрозумів дві речі: що найбільше на світі (якщо не враховувати сну) люблю писати код, і що таке множина first_1(k). Якщо коротко, то це множина символів з яких може починатись рядок що виводиться з нетерміналу k. Наприклад:

digit = "0" | "1"
number = digit {digit}

first(number) = {"0", "1"}

І ми знаємо що парсер може прочитати не будь-яку граматику, а лише ту, в якої для кожного виразу на зразок

definition = exp1 | exp2

Виконується умова:

first_1(exp1) \cap first_1(exp2) = \varnothing

Таким чином отака граматика багатозначна:

sum = number | sum ("+" | "-") sum

Бо вираз 1 – 10 + 11 можна розпарсити як (1 – 10) + 11 або як 1 – (10 + 11). А все тому, що first(number) = first(sum).

Її можна переписати так щоб в правилі для суми не було двох варіантів що починаються з однакових символів.

sum = number {("+" | "-") number}

Так вся сума розгортатиметься зразу і не буде проблем з тим яку операцію виконувати швидше.

Тепер би ще змусити його автоматично генерувати код парсера за EBNF і вийде власний YACC. :)


Filed under: Кодерство Tagged: Python

Пишемо переглядач молекул з Pyglet

Я хотів створити серію уроків про графіку в OpenGL по слідах NeHe, але отримав іншу пропозицію, і пріоритети змінились. Ну й графіка в наш час людей не так цікавить. Але так як задачу я почав робити, просто витирати її з списку проектів буде не цікаво, краще опублікувати те що є і перенести в список закінчених проектів. Чим я зараз й займусь.

Ідея програми – намалювати атоми сферами різних кольорів і розмістити їх в різних місцях простору, таким чином отримавши молекулу. Для цього нам треба знати координати. Для цього ми використаємо Open Babel – хімічну експертну систему. Ось інструкції з інсталяції, apt-get install python-openbabel якщо кому лінь їх читати.

Глюкоза

Молекула глюкози

Користуючись нею, ми можемо перетворити формулу SMILES, на список координат атомів:

import pybel

smile = raw_input('Enter SMILE molecule:')
molecule = pybel.readstring('smi', smile)
molecule.make3D()

for atom in molecule.atoms:
    print atom.type, ' '.join(map(str, atom.coords))

SMILES можна знайти в статтях вікіпедії про різні речовини. Ось наприклад глюкоза: OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O. І її координати:

O3 3.08232699168 1.41136753836 1.97383867659
C3 2.63605783234 0.116724346362 2.37092125466
C3 2.87897272901 -0.854338624684 1.21070216538
H 2.47296741411 -0.36351143938 0.319191621385
O3 4.29331227545 -1.03408976253 1.03052197614
C3 2.18198168708 -2.2062426467 1.4123437219
H 2.52686439483 -2.70828022178 2.32628341407
O3 0.757046712076 -2.07375697965 1.48816465135
C3 2.4834103428 -3.09613160782 0.198042289604
H 2.03158506981 -2.66605342385 -0.704362586236
O3 1.84366255476 -4.36331585678 0.373985237387
C3 3.99532722341 -3.24522583591 0.00523555683618
H 4.41250004827 -3.77444425583 0.871020029013
O3 4.29626886035 -4.03252960027 -1.15195954921
C3 4.62954125722 -1.84273135567 -0.0947112115177
H 5.71887138656 -1.95252927548 -0.108137148969
O3 4.3079363412 -1.18316983652 -1.31789119536
HO 2.91473185309 2.02688340774 2.71060639162
H 1.56956736943 0.19992674022 2.5985040442
H 3.17829013287 -0.18365904297 3.27321534863
HO 0.532102901531 -1.64213847492 2.33074495499
HO 0.907383263524 -4.15051515566 0.55676359202
HO 3.89297302828 -3.59188323274 -1.91963488602
HO 3.3506978517 -1.05986229308 -1.37211748251

Ок, залишилось написати програму що бере оці координати і створює таку картинку як у цій публікації (увага, ввесь код звідси і аж до кінця публікації – це одна програма):

#! /usr/bin/python3
from random import random

import pyglet
from pyglet.window import key, Window
from pyglet.gl import *
from pyglet.gl.glu import *

window = Window()

Об’єкт наступного класу просто буде повертати кортеж з кольором для кожної назви атома. Деякі атоми ми задамо вручну, щодо правильної палітри – дивіться статтю CPK coloring.

class Palette(object):
    def __init__(self):
        self.colors = {
            'H': (0.0, 0.5, 0.5),
            'HO': (1.0, 0.5, 0.5),
            'C3': (0.1, 0.1, 0.1),
            'Car': (0.1, 0.1, 0.1),
            'O3': (1.0, 0.0, 0.0),
        }

    def get_color(self, name):
        if name not in self.colors:
            print(name)
            self.colors[name] = (random(), random(), random())
        return self.colors[name]

palette = Palette()

Молекула – це по суті список атомів (кожен з яких четвірка з назви і трьох координат), що буде завантажувати себе з файлу при створенні екземпляру класу, і вміє малювати себе:

class Molecule(object):
    def __init__(self, fn):
        self.atoms = []
        with open(fn) as f:
            for l in f:
                el, x, y, z = l.split()
                self.atoms.append(
                    (el, float(x), float(y), float(z))
                )

    def draw(self):
        for atom in self.atoms: # для кожного атома
            glPushMatrix() # зберегти матрицю моделі
            glTranslatef(*atom[1:]) # змістити матрицю моделі в координати атома
            # намалювати сферу радіусу 1 і кольору відповідного типу атома
            draw_sphere(1, palette.get_color(atom[0]))
            glPopMatrix() # завантажити збережену матрицю моделі

molecule = Molecule('glucose.dat') # створити молекулу глюкози

def draw_sphere(radius, color):
    glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
    
    # довго пояснювати що таке колір матеріалу, я й сам не до кінця знаю.
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat * 3)(*color))
    glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,
        (GLfloat * 3)(*map(lambda x: x/2, color))
    )
    # glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, (GLfloat * 3)(*color))

    sphere = gluNewQuadric()
    gluSphere(sphere, radius, 50, 50) # 50, 50 - це кількість меридіанів та паралелей. 
    # якщо потрібно багато атомів - зменшіть їх кількість для збільшення продуктивності.

Тепер займемось власне перемальовуванням екрану:

@window.event
def on_draw():
    update_frame(0)

rotation = 0 # Глобальна зміна з поточним поворотом моделі
def update_frame(dt):
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
    glLoadIdentity() # завантажити матрицю ідентичності 

    global rotation
    rotation += dt * 10 # чим більше часу пройшло - тим більше повертаємо
    glRotatef(rotation, 0, 1, 0) # навколо осі y
    molecule.draw() # і малюємо нашу молекулу.

При зміні розмірів вікна (і при його створенні) ініціалізуємо всілякі налаштування OpenGL:

@window.event
def on_resize(width, height):
    glClearColor(0.0, 0.3, 0.0, 0.0) # задаємо колір фону

    glEnable(GL_DEPTH_TEST) # вмикаємо буфер глибини

    glEnable(GL_LIGHTING)
    glEnable(GL_LIGHT0)
    glLightf(GL_LIGHT0, GL_POSITION, 1, 5, 4) # ставимо одне світло

    glViewport(0, 0, width, height)
    glMatrixMode(GL_PROJECTION)
    glLoadIdentity()
    gluPerspective(45, width / height, .1, 1000) # перспективна проекція з кутом 45
    gluLookAt( # ставимо камеру і націлюємо її в цент сцени
     1, 4, 15, # eye
     0, 0, 0, # target
     0, 1, 0  # up
    )
    glMatrixMode(GL_MODELVIEW) 
    return pyglet.event.EVENT_HANDLED

При натисканні клавіш “вліво” і “вправо” оновлюємо кадр, повернувши трішки модель. А також оновлюємо 50 разів на секунду. І запускаємо цикл подій:

@window.event
def on_key_press(symbol, modifiers):
    if symbol == key.LEFT:
        update_frame(-1)
    elif symbol == key.RIGHT:
        update_frame(1)

pyglet.clock.schedule_interval(update_frame, 0.02)

pyglet.app.run()

На цьому і все. Можна було звісно написати набагато краще, без глобальних змінних, з кращими поворотами камери і кращим освітленням і т.п. Але поки що є важливіші речі. (Хоча, якщо ви захочете онлайн курс, і зможете зробити так що мені не треба буде ходити на роботу – можемо щось придумати ;) ).

Ах, і стаття з якої взято інформацію про те як отримати координати для атомів молекули: Patrick Fuller – Molecules in Blender


Filed under: Графіка, Кодерство Tagged: освіта, OpenGL, Python

Пишемо переглядач молекул з Pyglet

Я хотів створити серію уроків про графіку в OpenGL по слідах NeHe, але отримав іншу пропозицію, і пріоритети змінились. Ну й графіка в наш час людей не так цікавить. Але так як задачу я почав робити, просто витирати її з списку проектів буде не цікаво, краще опублікувати те що є і перенести в список закінчених проектів. Чим я зараз й займусь.

Ідея програми – намалювати атоми сферами різних кольорів і розмістити їх в різних місцях простору, таким чином отримавши молекулу. Для цього нам треба знати координати. Для цього ми використаємо Open Babel – хімічну експертну систему. Ось інструкції з інсталяції, apt-get install python-openbabel якщо кому лінь їх читати.

Глюкоза

Молекула глюкози

Користуючись нею, ми можемо перетворити формулу SMILES, на список координат атомів:

import pybel

smile = raw_input('Enter SMILE molecule:')
molecule = pybel.readstring('smi', smile)
molecule.make3D()

for atom in molecule.atoms:
    print atom.type, ' '.join(map(str, atom.coords))

SMILES можна знайти в статтях вікіпедії про різні речовини. Ось наприклад глюкоза: OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O. І її координати:

O3 3.08232699168 1.41136753836 1.97383867659
C3 2.63605783234 0.116724346362 2.37092125466
C3 2.87897272901 -0.854338624684 1.21070216538
H 2.47296741411 -0.36351143938 0.319191621385
O3 4.29331227545 -1.03408976253 1.03052197614
C3 2.18198168708 -2.2062426467 1.4123437219
H 2.52686439483 -2.70828022178 2.32628341407
O3 0.757046712076 -2.07375697965 1.48816465135
C3 2.4834103428 -3.09613160782 0.198042289604
H 2.03158506981 -2.66605342385 -0.704362586236
O3 1.84366255476 -4.36331585678 0.373985237387
C3 3.99532722341 -3.24522583591 0.00523555683618
H 4.41250004827 -3.77444425583 0.871020029013
O3 4.29626886035 -4.03252960027 -1.15195954921
C3 4.62954125722 -1.84273135567 -0.0947112115177
H 5.71887138656 -1.95252927548 -0.108137148969
O3 4.3079363412 -1.18316983652 -1.31789119536
HO 2.91473185309 2.02688340774 2.71060639162
H 1.56956736943 0.19992674022 2.5985040442
H 3.17829013287 -0.18365904297 3.27321534863
HO 0.532102901531 -1.64213847492 2.33074495499
HO 0.907383263524 -4.15051515566 0.55676359202
HO 3.89297302828 -3.59188323274 -1.91963488602
HO 3.3506978517 -1.05986229308 -1.37211748251

Ок, залишилось написати програму що бере оці координати і створює таку картинку як у цій публікації (увага, ввесь код звідси і аж до кінця публікації – це одна програма):

#! /usr/bin/python3
from random import random

import pyglet
from pyglet.window import key, Window
from pyglet.gl import *
from pyglet.gl.glu import *

window = Window()

Об’єкт наступного класу просто буде повертати кортеж з кольором для кожної назви атома. Деякі атоми ми задамо вручну, щодо правильної палітри – дивіться статтю CPK coloring.

class Palette(object):
    def __init__(self):
        self.colors = {
            'H': (0.0, 0.5, 0.5),
            'HO': (1.0, 0.5, 0.5),
            'C3': (0.1, 0.1, 0.1),
            'Car': (0.1, 0.1, 0.1),
            'O3': (1.0, 0.0, 0.0),
        }

    def get_color(self, name):
        if name not in self.colors:
            print(name)
            self.colors[name] = (random(), random(), random())
        return self.colors[name]

palette = Palette()

Молекула – це по суті список атомів (кожен з яких четвірка з назви і трьох координат), що буде завантажувати себе з файлу при створенні екземпляру класу, і вміє малювати себе:

class Molecule(object):
    def __init__(self, fn):
        self.atoms = []
        with open(fn) as f:
            for l in f:
                el, x, y, z = l.split()
                self.atoms.append(
                    (el, float(x), float(y), float(z))
                )

    def draw(self):
        for atom in self.atoms: # для кожного атома
            glPushMatrix() # зберегти матрицю моделі
            glTranslatef(*atom[1:]) # змістити матрицю моделі в координати атома
            # намалювати сферу радіусу 1 і кольору відповідного типу атома
            draw_sphere(1, palette.get_color(atom[0]))
            glPopMatrix() # завантажити збережену матрицю моделі

molecule = Molecule('glucose.dat') # створити молекулу глюкози

def draw_sphere(radius, color):
    glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
    
    # довго пояснювати що таке колір матеріалу, я й сам не до кінця знаю.
    glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (GLfloat * 3)(*color))
    glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION,
        (GLfloat * 3)(*map(lambda x: x/2, color))
    )
    # glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, (GLfloat * 3)(*color))

    sphere = gluNewQuadric()
    gluSphere(sphere, radius, 50, 50) # 50, 50 - це кількість меридіанів та паралелей. 
    # якщо потрібно багато атомів - зменшіть їх кількість для збільшення продуктивності.

Тепер займемось власне перемальовуванням екрану:

@window.event
def on_draw():
    update_frame(0)

rotation = 0 # Глобальна зміна з поточним поворотом моделі
def update_frame(dt):
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
    glLoadIdentity() # завантажити матрицю ідентичності 

    global rotation
    rotation += dt * 10 # чим більше часу пройшло - тим більше повертаємо
    glRotatef(rotation, 0, 1, 0) # навколо осі y
    molecule.draw() # і малюємо нашу молекулу.

При зміні розмірів вікна (і при його створенні) ініціалізуємо всілякі налаштування OpenGL:

@window.event
def on_resize(width, height):
    glClearColor(0.0, 0.3, 0.0, 0.0) # задаємо колір фону

    glEnable(GL_DEPTH_TEST) # вмикаємо буфер глибини

    glEnable(GL_LIGHTING)
    glEnable(GL_LIGHT0)
    glLightf(GL_LIGHT0, GL_POSITION, 1, 5, 4) # ставимо одне світло

    glViewport(0, 0, width, height)
    glMatrixMode(GL_PROJECTION)
    glLoadIdentity()
    gluPerspective(45, width / height, .1, 1000) # перспективна проекція з кутом 45
    gluLookAt( # ставимо камеру і націлюємо її в цент сцени
     1, 4, 15, # eye
     0, 0, 0, # target
     0, 1, 0  # up
    )
    glMatrixMode(GL_MODELVIEW) 
    return pyglet.event.EVENT_HANDLED

При натисканні клавіш “вліво” і “вправо” оновлюємо кадр, повернувши трішки модель. А також оновлюємо 50 разів на секунду. І запускаємо цикл подій:

@window.event
def on_key_press(symbol, modifiers):
    if symbol == key.LEFT:
        update_frame(-1)
    elif symbol == key.RIGHT:
        update_frame(1)

pyglet.clock.schedule_interval(update_frame, 0.02)

pyglet.app.run()

На цьому і все. Можна було звісно написати набагато краще, без глобальних змінних, з кращими поворотами камери і кращим освітленням і т.п. Але поки що є важливіші речі. (Хоча, якщо ви захочете онлайн курс, і зможете зробити так що мені не треба буде ходити на роботу – можемо щось придумати ;) ).

Ах, і стаття з якої взято інформацію про те як отримати координати для атомів молекули: Patrick Fuller – Molecules in Blender


Filed under: Графіка, Кодерство Tagged: освіта, OpenGL, Python

OpenGL в Python

Мене якось запитали про це, але без підготовки пояснити було важко, крім того мета була амбітна – намалювати молекулу, тому вийшло не так добре як би хотілось. Спробую написати короткий покроковий вступ в цю тему, який приблизно слідує послідовності в старих уроках Nehe (так, я чув що вони застаріли, але для нового OpenGL з шейдерами я якихось гарних послідовних уроків не бачив).

Інсталяція та перше вікно

Найперше що потрібно графічним програмам – вікно. Щоб створити вікно, нам треба якусь бібліотеку, наприклад PyQt, PySide, PyGtk, WxPython чи PyGame – їх купа. Потрібно також щоб це вікно підтримувало контекст OpenGL (тобто могло дозволити відеокарті виводити свої дані в область вікна). З цим може справитись багато бібліотек, але ми виберемо Pyglet. Тому що в ній мало зайвого, і вона ставиться традиційно:

pip install pyglet

Ну, і як годиться – почнемо з найпростішої програми:

import pyglet

window = pyglet.window.Window(width=640, height=480, caption="Hello OpenGL!")
pyglet.app.run()

Отримаємо вікно заданої ширини та висоти, і з заданим заголовком:

Наше перше вікно

Наше перше вікно

Елементарно, правда?

Фарби

Давайте ще зафарбуємо вікно в білий колір. Для цього потрібно знати що кольори задаються переважно інтенсивністю світла в моделі RGB (червоний, зелений, голубий), числами від 0 до 1. Тобто білий – це 1.0, 1.0, 1.0, сірий – 0.5, 0.5, 0.5, і т.п. Детальніше на вікіпедії.

import pyglet
from pyglet.gl import * # імпортуємо всі функції OpenGL
# вони починатимуться з префіксів gl або glu, тому простір імен надто не засмічуватимуть

window = pyglet.window.Window(width=640, height=480, caption="Hello OpenGL!")

# я не буду довго пояснювати що таке декоратор. Просто знайте, що 
# @window.event позначає функції що відповідають за обробку подій

@window.event
def on_draw(): 
    # викликатиметься, коли операційна система вирішить що вікно треба перемалювати
    # наприклад, коли ми забрали вікно що було над нашим, або вперше виводимо його на екран  

    glClearColor(1.0, 1.0, 1.0, 1.0) # Задати колір яким ми будемо очищати екран. 
    # Четверте число - прозорість.
    # Я його сам не дуже розумію, але обов’язково треба чотири параметри.

    glClear(GL_COLOR_BUFFER_BIT) # очистити буфер кольору 
    # (бувають і інші буфери, але про це пізніше)

pyglet.app.run()

To be continued

В цьому уроці я хотів ще написати про те як намалювати трикутник, але часу мало (тобто є інші пріорітети). Зате ми створили вікно і навчились змінювати його колір. Ну й краще напевне писати менше але частіше. Якщо пілотний епізод цього курсу буде популярний – подумаю чи випускати перший сезон.

P.S. Май на увазі, якщо ти не хочеш навчити свою дівчину програмувати – вона може знайти когось хто схоче. :P Або взагалі сама з допомогою інтернету звикне вчитись.


Filed under: Графіка, Кодерство Tagged: OpenGL, Python

OpenGL в Python

Мене якось запитали про це, але без підготовки пояснити було важко, крім того мета була амбітна – намалювати молекулу, тому вийшло не так добре як би хотілось. Спробую написати короткий покроковий вступ в цю тему, який приблизно слідує послідовності в старих уроках Nehe (так, я чув що вони застаріли, але для нового OpenGL з шейдерами я якихось гарних послідовних уроків не бачив).

Інсталяція та перше вікно

Найперше що потрібно графічним програмам – вікно. Щоб створити вікно, нам треба якусь бібліотеку, наприклад PyQt, PySide, PyGtk, WxPython чи PyGame – їх купа. Потрібно також щоб це вікно підтримувало контекст OpenGL (тобто могло дозволити відеокарті виводити свої дані в область вікна). З цим може справитись багато бібліотек, але ми виберемо Pyglet. Тому що в ній мало зайвого, і вона ставиться традиційно:

pip install pyglet

Ну, і як годиться – почнемо з найпростішої програми:

import pyglet

window = pyglet.window.Window(width=640, height=480, caption="Hello OpenGL!")
pyglet.app.run()

Отримаємо вікно заданої ширини та висоти, і з заданим заголовком:

Наше перше вікно

Наше перше вікно

Елементарно, правда?

Фарби

Давайте ще зафарбуємо вікно в білий колір. Для цього потрібно знати що кольори задаються переважно інтенсивністю світла в моделі RGB (червоний, зелений, голубий), числами від 0 до 1. Тобто білий – це 1.0, 1.0, 1.0, сірий – 0.5, 0.5, 0.5, і т.п. Детальніше на вікіпедії.

import pyglet
from pyglet.gl import * # імпортуємо всі функції OpenGL
# вони починатимуться з префіксів gl або glu, тому простір імен надто не засмічуватимуть

window = pyglet.window.Window(width=640, height=480, caption="Hello OpenGL!")

# я не буду довго пояснювати що таке декоратор. Просто знайте, що 
# @window.event позначає функції що відповідають за обробку подій

@window.event
def on_draw(): 
    # викликатиметься, коли операційна система вирішить що вікно треба перемалювати
    # наприклад, коли ми забрали вікно що було над нашим, або вперше виводимо його на екран  

    glClearColor(1.0, 1.0, 1.0, 1.0) # Задати колір яким ми будемо очищати екран. 
    # Четверте число - прозорість.
    # Я його сам не дуже розумію, але обов’язково треба чотири параметри.

    glClear(GL_COLOR_BUFFER_BIT) # очистити буфер кольору 
    # (бувають і інші буфери, але про це пізніше)

pyglet.app.run()

To be continued

В цьому уроці я хотів ще написати про те як намалювати трикутник, але часу мало (тобто є інші пріорітети). Зате ми створили вікно і навчились змінювати його колір. Ну й краще напевне писати менше але частіше. Якщо пілотний епізод цього курсу буде популярний – подумаю чи випускати перший сезон.

P.S. Май на увазі, якщо ти не хочеш навчити свою дівчину програмувати – вона може знайти когось хто схоче. :P Або взагалі сама з допомогою інтернету звикне вчитись.


Filed under: Графіка, Кодерство Tagged: OpenGL, Python

Анонс Lvivpy4

Попередні три я пропустив бо не читаю новини, але от на цьому буду, тому що там я буду нести людям світло науки і знання.

Цитую сам себе:

Ви дізнаєтесь що таке компонент, інтерфейс, інваріант, утиліта, фабрика, адаптер (це не тільки шаблони), реєстр компонентів, і купу інших розумних слів. А також як можна застосовувати штуки що ці слова позначають щоб побудувати систему яку можна розширювати новими компонентами, і реалізувати “статичну типізацію” та “слабку типізацію”.

Одним словом те що ви могли почитати в трактаті про ZCA, тільки тепер в авторській озвучці, + можна буде задавати питання, і побачити мене в 3D. Головне руками не чіпати! :)

Тому якщо в кого виникне таке бажання – заходьте в Офіс Lohika Systems, Львів, вул. Лемківська 15а, 2-й поверх, 30-го травня. Реєстрація: http://www.meetup.com/uapycon/events/222342688/

І не переживайте, там доповідаю не тільки я.

Робота і життя після відпустки починається шалено (правда якщо врахувати що під час відпустки я більшість часу лише спав, їв і дихав), я навіть 10% всього цікавого зараз не розповів, але те що розповів – одне з найголовнішого. :)


Filed under: Кодерство, Нещоденник Tagged: Python

Анонс Lvivpy4

Попередні три я пропустив бо не читаю новини, але от на цьому буду, тому що там я буду нести людям світло науки і знання.

Цитую сам себе:

Ви дізнаєтесь що таке компонент, інтерфейс, інваріант, утиліта, фабрика, адаптер (це не тільки шаблони), реєстр компонентів, і купу інших розумних слів. А також як можна застосовувати штуки що ці слова позначають щоб побудувати систему яку можна розширювати новими компонентами, і реалізувати “статичну типізацію” та “слабку типізацію”.

Одним словом те що ви могли почитати в трактаті про ZCA, тільки тепер в авторській озвучці, + можна буде задавати питання, і побачити мене в 3D. Головне руками не чіпати! :)

Тому якщо в кого виникне таке бажання – заходьте в Офіс Lohika Systems, Львів, вул. Лемківська 15а, 2-й поверх, 30-го травня. Реєстрація: http://www.meetup.com/uapycon/events/222342688/

І не переживайте, там доповідаю не тільки я.

Робота і життя після відпустки починається шалено (правда якщо врахувати що під час відпустки я більшість часу лише спав, їв і дихав), я навіть 10% всього цікавого зараз не розповів, але те що розповів – одне з найголовнішого. :)


Filed under: Кодерство, Нещоденник Tagged: Python

Випадковий ідентифікатор в Python

Можна отримати так:

import random
def random_id(length=6):
   return ''.join(
        random.choice(string.lowercase)
        for i in range(length)
    )

###############
>>> random_id()
'kqxmua'

Якщо треба особливо оформлений, як от IP, чи MAC-адреса, то можна зробити перетворення:

def asmac(val):
    """Convert a byte string to a MAC address string.  """
    return ':'.join('%02X' % ord(c) for c in val)

def random_mac():
    return asmac(random_id())

###################
>>> random_mac()
'78:71:6A:72:6E:63'

Але такі ідентифікатори як “kqxmua” нормальній людині важко запам’ятати, бо вони не асоціюються з жодними поняттями. Ну окрім частинки “ua”, але й то вона туди випадково потрапила. Проте, в Linux можна легко отримати випадкове слово, бо в ньому є словник:

def random_word():
    return random.choice(
        open('/usr/share/dict/words').readlines() # жертиме пам’ять! 
    ).strip()

#################
'.join(random_word() for i in range(5))
'hermitical, Canter, Paryavi, mergences, Mind'

Хоча я знайомий лише з “hermitical” та “mind”, але асоціації вже легше побудувати, правда?


Filed under: Всяке, Кодерство Tagged: linux, Python

Випадковий ідентифікатор в Python

Можна отримати так:

import random
def random_id(length=6):
   return ''.join(
        random.choice(string.lowercase)
        for i in range(length)
    )

###############
>>> random_id()
'kqxmua'

Якщо треба особливо оформлений, як от IP, чи MAC-адреса, то можна зробити перетворення:

def asmac(val):
    """Convert a byte string to a MAC address string.  """
    return ':'.join('%02X' % ord(c) for c in val)

def random_mac():
    return asmac(random_id())

###################
>>> random_mac()
'78:71:6A:72:6E:63'

Але такі ідентифікатори як “kqxmua” нормальній людині важко запам’ятати, бо вони не асоціюються з жодними поняттями. Ну окрім частинки “ua”, але й то вона туди випадково потрапила. Проте, в Linux можна легко отримати випадкове слово, бо в ньому є словник:

def random_word():
    return random.choice(
        open('/usr/share/dict/words').readlines() # жертиме пам’ять! 
    ).strip()

#################
'.join(random_word() for i in range(5))
'hermitical, Canter, Paryavi, mergences, Mind'

Хоча я знайомий лише з “hermitical” та “mind”, але асоціації вже легше побудувати, правда?


Filed under: Всяке, Кодерство Tagged: linux, Python

Зберегти всю стіну групи VK в таблицю

Якось під час чергового наближення економічної кризи захотілось проаналізувати ціну нерухомості в Львові. А ще, в той же час я наткнувся на документацію API Вконтакті. А так як своє житло я шукав в тому числі і в тій соціальній мережі, то вирішив проаналізувати наприклад спільноту vk.com/nomakler.

Ну, проаналізувати це легко сказати – важче зробити. Як витягти з повідомлення ціну, і як відрізнити попит від пропозиції? Га?

Але є половинний результат – ФСБ мусило поділитись частиною своєї бази даних розміром в 40450 оголошень. Тут можна її завантажити як tsv, xls чи інший зручний для вас формат. Може комусь, хто захоче збільшити конкуренцію серед львівськи маклерів/ріелторів знадобиться.

А якщо кому потрібна інформація з інших груп – ось скрипт. Викликаєте функцію save2tsv з назвою групи і назвою файлу в який писати – і чекаєте поки завантажиться.

import requests
import json
from pprint import pprint
from itertools import islice
from datetime import datetime

from butils.csv_wrapper import UnicodeWriter

class APIError(Exception):
    pass

def vk(method, **kwargs):
    '''
        https://vk.com/dev/methods
    '''
    r = requests.get(
        'https://api.vk.com/method/%s' % method,
        params=kwargs
    )
    js = json.loads(r.text)
    if js.get('error'):
        raise APIError(js['error']['error_msg'])

    return js['response']


def get_users(ids, known_users={}):
    request_ids = [i for i in ids if i not in known_users]
    if request_ids:
        user_ids=','.join(str(i) for i in request_ids if i > 0)
        if user_ids:
            users = vk('users.get', user_ids=user_ids)
        else:
            users = []
        group_ids=','.join(str(-i) for i in request_ids if i < 0)
        if group_ids:
            groups = vk('groups.getById', group_ids=group_ids)
        else:
            groups = []
        for user in users:
            known_users[int(user['uid'])] = dict(
                first_name = user['first_name'],
                last_name = user['last_name'],
            )
        for group in groups:
            known_users[-int(group['gid'])] = dict(
                first_name = group['name'],
                last_name = group['gid']
            )
    return known_users


def get_wall(domain):
    count = 50
    offset = 0
    def get_with_offset(offset):
        nonlocal count
        print('get_with_offset(%s)' % offset)
        total = vk('wall.get',
            domain=domain,
            count=1,
        )[0]
        off = total - offset - count
        if off < 0:
            count = count + off
            off = 0
        return vk('wall.get',
            domain=domain,
            count=count,
            offset=off,
        )[1:][::-1] # remove first and reverse

    while True:
        posts = get_with_offset(offset)
        offset += count
        users = get_users(p['from_id'] for p in posts)
        for p in posts:
            yield p, users[p['from_id']]
        if count < 50:
            return


def save2tsv(domain, dst):
    with UnicodeWriter(dst, encoding='utf-8', delimiter='t') as writer:
        writer.writerow((
            'ID',
            'Datetime',
            'First name',
            'Last name',
            'Text',
            'Type',
            'Comments',
            'Reposts',
            'Likes',
        ))
        for p, user in get_wall(domain):
            writer.writerow(list(map(str, (
                p['id'], # ID
                datetime.fromtimestamp(p['date']), # Datetime
                user['first_name'], # First name
                user['last_name'], # Last name
                p['text'], # Text
                p['post_type'], # Type
                p['comments']['count'], # Comments
                p['reposts']['count'], # Reposts
                p['likes']['count'], # Likes
            ))))

# save2tsv('nomakler', 'nomakler.tsv')

Filed under: Кодерство, Павутина Tagged: Python